THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Движение любого сочленения осуществляется благодаря сокращениям скелетных мышц. На следующей диаграмме представлен метаболизм энергии в мышце.

Сократительная функция всех типов мышц обусловлена превращением в мышечных волокнах химической энергии определённых биохимических процессов в механическую работу. Гидролиз аденозинтрифосфата (АТФ) как раз иобеспечивает мышцу этой энергией.

Поскольку снабжение мускулатуры АТФ невелико, необходимо активировать метаболические пути к ресинтезу АТФ , чтобы уровень синтеза соответствовал затратам на сокращение мышц. Образование энергии для обеспечения мышечной работы может осуществляться анаэробным (без использования кислорода) и аэробным путем. АТФ синтезируется из аденозиндифосфата (АДФ ) посредством энергии креатинфосфата, анаэробного гликолиза или окислительного метаболизма. Запасы АТФ в мышцах сравнительно ничтожны и их может хватить лишь на 2-3 секунды интенсивной работы.

Креатинфосфат

Запасы креатинфосфата (КрФ ) в мышце побольше запасов АТФ и они анаэробномогут быть быстро превращены в АТФ . КрФ – самая «быстрая» энергии в мышцах (она обеспечивает энергию в первые 5-10 секунд очень мощной, взрывной работы силового характера, например, при подъеме штанги). После исчерпания запасов КрФ организм переходит к расщеплению мышечного гликогена, обеспечивающего более продолжительную (до 2-3 минут), но менее интенсивную (в три раза) работу.

Гликолиз

Гликолиз - форма анаэробного метаболизма, обеспечивающая ресинтез АТФ и КрФ за счет реакций анаэробного расщепления гликогена или глюкозы до молочной кислоты.

КрФ считаетсятопливом быстрой реализации, которыйрегенерирует АТФ , которогов мышцах незначительное количество и поэтомуКрФ является основным энергетиком в течение нескольких секунд. Гликолиз более сложная система, способная функционироватьдлительное время, поэтому ее значение существенно для более длительных активных действий. КрФ ограничен своим незначительным количеством. Гликолиз же имеет возможность для относительно длительного энергетического обеспечения, но, производя молочную кислоту,заполняет ею двигательные клетки ииз-заэтого ограничивает мышечную активность.

Окислительный метаболизм

Связан с возможностью выполнения работы за счет окисления энергетических субстратов, в качестве которых могут использоваться углеводы, жиры, белки при одновременном увеличении доставки и утилизации кислорода в работающих мышцах.

Для пополнения срочных и кратковременных энергетических запасов и выполнения длительной работы мышечная клетка использует так называемые долговременные источники энергии. К ним относятся глюкоза и другие моносахара, аминокислоты, жирные кислоты, глицеролкомпоненты продуктов питания, доставляемые в мышечную клетку через капиллярную сеть и участвующие в окислительном метаболизме. Эти источники энергии генерируют образование АТФ путем сочетания утилизации кислорода с окислением носителей водорода в электронтранспортной системе митохондрии.

В процесс полного окисления одной молекулы глюкозы синтезируется 38 молекул АТФ . При сопоставлении анаэробного гликолиза с аэробным расщеплением углеводов можно заметить, что аэробный процесс в 19 раз эффективнее.

Во время выполнения кратковременных интенсивных физических нагрузок в качестве основных источников энергии используются КрФ , гликоген и глюкоза скелетных мышц. В этих условиях главным фактором, лимитирующим образование АТФ , можно считать отсутствие необходимого количества кислорода. Интенсивный гликолиз приводит к накоплению в скелетных мышцах больших количеств молочной кислоты, которая постепенно диффундирует в кровь и переносится в печень. Высокие концентрации молочной кислоты становятся важным фактором регуляторного механизма, ингибирующего обмен свободных жирных кислот во время физических нагрузок длительностью 30-40 с.

По мере увеличения длительности физических нагрузок происходит постепенное снижение концентрации инсулина в крови. Этот гормон активно участвует в регуляции жирового обмена и при высоких концентрациях тормозит активность липаз. Снижение концентрации инсулина во время длительных физических нагрузок приводит к повышению активности инсулин зависимых ферментных систем, что проявляется в усилении процесса липолиза и увеличении освобождения жирных кислот из депо.

Важность этого регуляторного механизма становится очевидной, когда спортсмены допускают наиболее распространенную ошибку. Нередко, стараясь обеспечить организм легкоусвояемыми источниками энергии, за час до начала соревнований или тренировок они принимают богатую углеводами пищу или концентрированный, содержащий глюкозу, напиток. Такое насыщение организма легкоусвояемыми углеводами приводит через 15-20 минут к повышению уровня глюкозы в крови, а это, в свою очередь, вызывает усиленное выделение инсулина клетками поджелудочной железы. Повышение концентрации этого гормона в крови приводит к усилению потребления глюкозы в качестве источника энергии для мышечной деятельности. В конечном счете, вместо энергетически более выгодных жирных кислот в организме расходуются углеводы. Так, прием глюкозы за час до старта может существенно повлиять на спортивную работоспособность и снизить выносливость к длительной нагрузке.

Активное участие свободных жирных кислот в энергетическом обеспечении мышечной деятельности позволяет более экономно выполнять длительные физические на грузки. Усиление процесса липолиза во время физических нагрузок приводит к освобождению жирных кислот из жировых депо в кровь, и они могут быть доставлены в скелетные мышцы или использованы для образования липопротеинов крови. В скелетных мышцах свободные жирные кислоты проникают в митохондрии, где подвергаются последовательному окислению, сопряженному с фосфорилированием и синтезом АТФ .

Каждый из перечисленных биоэнергетических компонентов физической работоспособности характеризуется критериями мощности, емкости и эффективности (табл. 1).

Таблица 1. Основные биоэнергетические характеристики метаболических процессов - источников энергии при мышечной деятельности

Критерии мощности

Максимальная энергетическая емкость, кДж/кГ

Метаболический процесс

Максимальная мощность, кДж/кГмин

Время достижения макс. мощи. физической работы, с

Время удержания работоспособности на уровне макс. мощн., с

Алактатный анаэробный

3770

Гликолитический -анаэробный

2500

15-20

90-250

1050

Аэробный

1250

90-180

340-600

Не ограничена

Критерий мощности оценивает то максимальное количество энергии в единицу времени, которое может быть обеспечено каждой из метаболических систем.

Критерий емкости оценивает доступные для использования общие запасы энергетических веществ в организме, или общее количество выполненной работы за счет данного компонента.

Критерий эффективности показывает, какое количество внешней (механической) работы может быть выполнено на каждую единицу затрачиваемой энергии.

Важное значение имеет соотношение аэробной и анаэробной энергопродукции при выполнении работы разной интенсивности. На примере беговых дистанций из легкой атлетики можно представить это соотношение (табл.2)

Таблица 2. Относительный вклад механизмов аэробной и анаэробной энергопродукции при выполнении с максимальной интенсивностью однократной работы различной продолжительности

Зоны энергообеспечения

Продолжительность работы

Доля энергопродукции

(в %)

время, мин

Дистанция, м

Аэробная

Анаэробная

Анаэробная

10-13"

20-25"

45-60"

1,5-2,0"

Смешанная аэробно-анаэробная

2,5-3"

1000

4,0-6,0"

1500

8,0-13,0"

3000-5000

Аэробная

12,0-20,0"

5000

24,0-45,0"

10000

Более 1,5 час

30000-42195

Повышайте уровень АТФ для быстрого восстановления и роста

АТФ представляет собой источник внутриклеточной энергии, контролирующий почти все функции мышц и определяющий уровень силы и выносливости. Он также регулирует анаболическую ответную реакцию на тренинг, а также влияние большинства гормонов на клеточном уровне. Вполне можно предположить, что чем больше АТФ содержится в мышцах, тем они будут больше и мощнее.

Факт в том, что интенсивный тренинг бодибилдера исчерпывает запасы АТФ в мышцах. И это состояние опустошенности может длиться несколько дней, препятствуя росту мышц. В частности, перетренированность является результатом длительного нахождения организма в состоянии истощения запасов АТФ. Для того, чтобы восстановить уровень АТФ в мышцах, вы должны научиться эффективно использовать различные стимуляторы повышения уровня АТФ.

Уровень АТФ во время тренировки

Для мышечных сокращений используется энергия АТФ, содержащегося в мышечных клетках. Однако, при интенсивных сокращениях запас этого «горючего» быстро исчерпывается. Именно по этой причине вы не можете вечно продолжать вырабатывать такое же усилие. Чем тяжелее вы тренируетесь, тем больше АТФ вам требуется. Но чем больше становится отягощение, тем больше ваши клетки теряют способность воссоздавать АТФ. Вследствие этого, тяжелая нагрузка быстро «валит вас с ног», вызывая огромное разочарование, поскольку это лишает вас возможности выполнить последние, самые продуктивные, повторения. Именно тогда вы начинаете чувствовать сокращения мышц, ощущаете каждое волокно, но все они перестают работать из-за нехватки АТФ.

В действительности, уровень АТФ является одним из самых лимитирующих факторов в тренинге. Он сокращает количество стимулирующих рост повторений в каждом сете. Для того, чтобы возместить отсутствие интенсивности в конце сета, вы выполняете большее число сетов, что в результате дает значительный объем неэффективной работы с низкой интенсивностью.

В противоположность распространенному мнению, уровень АТФ после выполнения сета вовсе не нулевой. На самом деле, он очень далек от нуля. Медицинские исследования показывают, что уровень АТФ в мышцах снижается на 25% после 10 секунд максимальных мышечных сокращений (1). После 30 секунд выработки таких усилий уровень АТФ находится на отметке 50%. Поэтому вы все еще далеки до полного исчерпания запасов АТФ. Но даже небольшого снижения его уровня достаточно для того, чтобы не позволить мышцам сокращаться с такой мощностью, как вам бы хотелось. Конечно, запасы АТФ все больше и больше снижаются, когда вы выполняете более одного сета. Исследования показали, что 4-х минут отдыха было недостаточно для полного восстановления уровня АТФ в волокнах типа 2 после 30 секунд мышечных сокращений (2). Следовательно, когда вы начинаете второй сет, резерв АТФ в мышцах не оптимален. По мере того, как вы выполняете все больше и больше подходов, уровень АТФ становится все меньше.

Что происходит с АТФ после тренировки

После завершения тренировки резервы АТФ могут быть значительно сокращены. Когда вы отдыхаете, вы, возможно, ожидаете, что ваши мышцы получают возможность восстановиться. Ведь потребность в АТФ в это время снижается, а выработка увеличивается. Однако, помните, что в начале периода восстановления уровень АТФ низкий, поэтому его возвращение к нормальному займет некоторое время. Какое? Как это ни удивительно, для полного восполнения запасов АТФ потребуется от 24 до 72 часов.

Если вы находитесь в состоянии перетренированности, уровень АТФ не вернется к нормальному, базовому уровню. Хотя, к сожалению, после тренировки уровень АТФ несколько сокращен, он все еще остается достаточно высоким. Для этого есть несколько причин, среди них следующие:

1) Когда вы тренируетесь, в мышечных клетках накапливается натрий. После этого они должны избавиться от натрия с помощью механизма, называемого Na-K-АТФ-азным насосом. Как свидетельствует из названия, этот механизм использует АТФ в качестве источника энергии.

2) Если у вас болят мышцы, значит в них скопилось большое количество кальция. Они будут стараться содержащийся в них кальций вернуть в его естественные хранилища, но для этого тоже требуется определенный запас АТФ.

3) Другой интересный аспект касается образования глютамина. После тренировки потребность организма в глютамине очень сильно возрастает. Для того, чтобы справиться с возросшей потребностью в глютамине, организм начинает вырабатывать больше глютамина из других аминокислот, таких как аминокислоты с разветвленными цепями. Возникает состояние «перетягивания каната». По мере увеличения использования глютамина, увеличиваются и усилия организма по производству нового глютамина. Производство глютамина очень затратно с энергетической точки зрения - имеется в виду АТФ. Происходит оно в основном в мышцах, но уровень АТФ в мышцах после тренировки понижен, что препятствует выработке глютамина. Через некоторый промежуток времени выработка его уже не покрывает увеличившуюся потребность, что приводит к достоверному сокращению уровня глютамина после тренировки. С другой стороны, чтобы сделать это сокращение минимальным, организм старается увеличить скорость синтеза глютамина, используя еще больше АТФ. Следовательно, потребление АТФ мышцами остается высоким в течение длительного периода времени после тренировки, и это является причиной слишком длительного восстановления мышц.

АТФ и диета

Процесс тренинга и мышечного развития довольно труден даже тогда, когда вы нормально питаетесь. Но ведь культуристам время от времени приходится соблюдать низкоуглеводную диету. Вы можете себе представить, как сокращение приема пищи влияет на энергетический уровень в клетке. Во время длительной ограничительной диеты энергетическое равновесие в мышцах нарушается, что еще более усложняет поддержание нормального уровня АТФ. Это приводит к снижению силы при тренинге и длительному восстановлению после тренировки.

Функции АТФ

Помимо основной функции обеспечения энергией мышечных сокращений и контроля содержания электролитов в мышцах, АТФ выполняет множество других функций в мышцах. Например, он контролирует скорость синтеза протеина. Подобно тому, как строительство здания требует наличия исходных материалов и определенного расхода энергии, так и строительство мышечных тканей. Материалом служат аминокислоты, а источником энергии - АТФ. Анаболизм является одним из самых энергопотребляющих процессов, которые происходят внутри мышц.

Он потребляет столько АТФ, что при сокращении этого вещества на 30%, большая часть анаболических реакций останавливается. Таким образом, колебания уровня АТФ очень сильно сказываются на анаболическом процессе.

Этим объясняется тот факт, что во время тренировки мышцы не растут. Когда человек тренируется, уровень АТФ у него слишком низок. И если вызвать анаболический процесс именно в этот момент, то он еще больше бы исчерпал запас АТФ, снижая вашу способность сокращать мышцы. Чем раньше уровень АТФ вернется к нормальному, тем раньше начнется процесс синтеза протеина. Таким образом, несмотря на то, что очень важно повышать уровень АТФ во время тренировки, даже еще важнее делать это после тренировки, чтобы мышцы росли. АТФ также необходим анаболическим гормонам, чтобы они могли «творить чудеса». Как тестостерону, так и инсулину требуется АТФ для нормального функционирования.

Как это ни парадоксально, уровень АТФ контролирует и темп катаболизма. Основные протеолитические пути требуют затрат энергии для того, чтобы разрушать мышечную ткань. Хотя вы можете предположить, что послетренировочное сокращение уровня АТФ может спасти мышцы от катаболизма, к сожалению, это не так. Когда уровень АТФ в мышцах достигает нижнего порога, запускаются другие катаболические механизмы, не зависящие от АТФ. Содержащийся в клетках кальций начинает выводиться из клеток, вызывая основные нарушения. Более выигрышным вариантом будет усиление и анаболического, и катаболического процессов, чем сильный катаболический процесс и слабый анаболический. Следовательно, чем больше АТФ - тем лучше.

Как повысить уровень АТФ

Как культурист, вы обладаете огромным арсеналом мощных средств для повышения уровня АТФ. В данной статье я расскажу об использовании креатина, прогормонов и рибозы. Не буду останавливаться на углеводах, поскольку о них, как об источнике энергии, и так уже слишком много было написано. Глютамин и аминокислоты с разветвленными цепями тоже оказывают небольшое влияние на выработку АТФ, но в этот раз я не буду останавливаться на них подробно. Важно, чтобы вы поняли, что все эти стимуляторы характеризуются разновременностью срабатывания, поэтому являются лишь вспомогательными.

Самым быстродействующим стимулятором является D-рибоза. Молекула АТФ рождается при взаимодействии одной молекулы аденина, трех фосфатных групп и одной молекулы рибозы. Таким образом, рибоза является необходимым сырьем для синтеза АТФ. Рибоза также контролирует активность фермента 5-фосфорибозил-1-пирофосфат, необходимого для ресинтеза АТФ.

Я рекомендую употреблять по крайней мере 4 грамма рибозы за 45 минут до тренировки. У вас не только сразу же повысится уровень силы, но рибоза также предотвращает влияющее на результативность нервное утомление, когда вы добавляете повторения в самых тяжелых сетах.

Однако, рибоза действует не только как стимулятор выработки АТФ. Исследования ученых показали, что она оказывает эффективное влияние на увеличение уровня АТФ и на увеличение уровня уридинтрифосфата, являющегося еще одним, хотя и менее известным, источником клеточной энергии. Уридинтрифосфат имеет наиболее важное значение для медленносокращающихся волокон. Исследования показывают, что он оказывает сильное анаболическое влияние на мышцы. Он также помогает им избавиться от нашествий натрия, помогая калию проникнуть внутрь мышечных клеток, что, в свою очередь, щадит запасы АТФ.

Я считаю креатин умеренным стимулятором АТФ, а стимуляторами АТФ самого длительного действия являются прогормоны. Я сомневаюсь в том, что креатин способен оказывать стимулирующий эффект на выработку АТФ у тех, кто ведет малоподвижный образ жизни. Однако, как уже рассказывалось выше, интенсивная физическая нагрузка снижает уровень АТФ на длительное время. В этом случае креатин может обеспечить необходимый исходный материал для ресинтеза АТФ, благодаря его трансформации в фосфокреатин внутри мышц. Проведенный европейскими учеными эксперимент показал, что при дополнительном употреблении спортсменами высокого уровня тренированности креатина на протяжении пяти дней в количестве 21 г в день, вместе с употреблением 252 г углеводов, уровень АТФ в мышцах увеличился аж на 9%, а при употреблении предшественника АТФ фосфокреатина - на 11% (3).

Что касается прогормонов, проведенные на животных исследования показали, что уровень мужских гормонов очень сильно влияет на уровень АТФ в мышцах. При кастрировании крыс уровень АТФ в мышцах у них был понижен (4). Когда крысам вводили тестостерон, уровень АТФ восстанавливался до нормальной отметки. Результаты этого исследования доказали важность употребления стимуляторов выработки тестостерона, особенно в период после тренировки, когда уровень тестостерона снижается даже просто от употребления углеводов. Вы можете употреблять интракринный стимулятор выработки тестостерона, такой как андростенедион, и эндокринные стимуляторы, такие как предшественники нандролона. Таким образом, вы можете естественным образом отрегулировать снижающийся уровень тестостерона в крови, замещая его нандролоном, а также повысить при этом уровень тестостерона в мышцах с помощью андростенедиона.
Рибоза, креатин и прогормоны являются эффективными стимуляторами выработки АТФ. Комбинированный их прием повысит ваш силовой уровень во время тренинга с отягощениями, улучшая при этом мышечное восстановление и рост после тренировки. Поскольку их влияние по-разному распределяется по времени, и у них разный способ действия, они приносят оптимальные результаты, работая в синергии.

Молекула АТФ(аденозин трифосфат) является универсальным источником энергии, обеспечивая не только работу мышц, но и протекание многих других биологических процессов, включая и рост мышечной массы (анаболизм) .

Молекула АТФ состоит из аденина, рибозы и трех фосфатов. Энергия высвобождается при отделении от молекулы одного из трех фосфатов и превращением АТФ в АДФ (аденозин дифосфат). При необходимости может отделяться еще один фосфорный остаток с получением АМФ (аденозин монофосфат) и повторным выбросом энергии.

Наиболее важным качеством является то, что АДФ может быстро восстанавливаться до полностью заряженной АТФ, что объясняется невысокой стабильностью связей - например, жизнь молекулы АТФ составляет в среднем менее одной минуты, а за сутки с этой молекулой может происходить до 3000 циклов перезарядок.

Выделяемая АТФ энергия имеет большую величину, потому относится к МАКРОЭРГИЧЕСКИМ соединениям. Естественно, при восстановлении ее организм вынужден будет затратить такое же количество энергии.

Общий объем АТФ стабилен и обычно не превышает 0.5 % от массы мышц. Сам по себе объем увеличить не удастся, но можно улучшить скорость восстановления молекулы, что напрямую скажется на выносливости и силе спортсмена.

Восстановление АТФ происходит несколькими способами – вначале физической активности для перезарядки расходуется большое количество ресурсов, но и скорость восстановления АТФ очень высока, за тем организм переходит на все более экономичные способы ресинтеза, в конечном итоге мышечная система имеет возможность функционировать длительное время при умеренном синтезе АТФ.

Синтез АТФ

Прежде всего следует сказать, что качественный и быстрый синтез АТФ возможен только при поддержании высокого уровня тестостерона, поскольку мужские гормоны являются главными стимуляторами биологических процессов направленных на повышение силы и выносливости. Как повысить тестостерон читайте в

этой статье.

Подробнее о синтезе АТФ

Когда запасы фосфата креатина падают, включается так называемая АНАЭРОБНАЯ выносливость. Для синтеза АТФ используется много энергии, которую организм получает из запасов гликогена, восстановление АТФ происходит медленнее, но процесс активно продолжается более 2 минут. Положительная сторона – не требуется участия кислорода, отрицательная – вырабатывается много молочной кислоты.
Анаэробный метаболизм – основа силовой выносливости.

Когда заметно истощаются запасы гликогена усиливается АЭРОБНЫЙ метаболизм, который обеспечивает медленное, но достаточно длительное производство АТФ при очень экономном расходе глюкозы.Этот процесс полностью запускается уже через три минуты интенсивной нагрузки. Обеспечение энергией в этом случае требует участия кислорода. Для производства АТФ используются сначала углеводы, за тем жиры. Жиры могут применяться и ранее вместе с углеводами - в стрессовых состояниях - см. кортизол . Когда естественные запасы энергии подходят к концу организм берет в оборот и белки мышц (в первую очередь те, что возможно быстро восстановить) .
Наибольший выход молекул АТФ происходит при расщеплении жирных кислот.

АТФ в БОДИБИЛДИНГЕ

Организм обычно бережно расходует АТФ, потому спортсмен не может потратить весь запас энергии в одном интенсивном подходе. Если тело получит небольшой перерыв, запасы АТФ частично восстановятся и можно будет снова расходовать энергию, многократно повторяя подходы можно добиться значительной нагрузки на мышцы, но и заметно исчерпать АТФ.

Для полного восстановления АТФ требуется длительное время, потому в процессе занятия от одного упражнения к другому общий уровень энергии постоянно снижается. Согласно современным исследованиям сильное утомление приходит уже через час интенсивного тренинга, что вызывает быстрое повышение кортизола (гормон усталости) в крови и занятия с этого момента приносят скорее вред, чем пользу.

После тренировки тело продолжает расходовать АТФ для восстановления химического баланса и прочих процессов, включая затраты на рост мышц. Только после завершения всех восстановительных процессов организм сможет восполнить достаточный уровень АТФ. В зависимости от интенсивности тренировки, питания, уровня тестостерона, психологического состояния и генетических особенностей полное восстановление уровня АТФ может занять от 1 до 4 суток, потому стандартные 3 тренировки в неделю это скорее усредненный расчет. Индивидуально же частоту занятий нужно подбирать по общему самочувствию (с ленью не путать).

Постоянное недостаточное восстановление уровня АТФ со временем однозначно приводит к состоянию перетренированности, требующему длительного и серьезного лечения. Как удержать на высоте уровень АТФ читайте

АТФ - энергетическая основа движений человека. АТФ расщепляется во время движения, синтезируется во время отдыха. В бодибилдинге используется 3 режима воспроизведения АТФ: аэробный механизм, гликоген и молочная кислота, фосфагенный механизм. Помимо воспроизведения АТФ человеком, есть способы получения АТФ из вне, например способ получения АТФ внутримышечно.

АТФ в мышцах

Аденозин трифосфат (АТФ, он же аденин) - молекула, служащая энергетической основой всех биологических процессов человеческого организма. АТФ в мышцах используется для осуществления движений. Мышечное волокно сокращается под действием расщепления аденина, после этого высвобождается определенное количество энергии, которое идёт на сокращение мышц. В человеческом организме аденозин трифосфат получается из инозина (торговая марка: , инозин, рибонозин ит.д.).

Если при сокращении мышц АТФ расщепляется, то в моменты отдыха, наоборот - синтезируется. По большому счёту, АТФ в мышцах представляет из себя ни что иное, как биологическую батарею, которая запасает энергию, когда в ней нет необходимости. С другой стороны, освобождая её, если возникает потребность в энергии.

Роль атф в энергетическом обмене очень велика. Без атф человеческий организм не смог бы осуществлять процесс жизнедеятельности.Человек нуждается в энергетическом снабжении метаболизма, транспортировке различных молекул ит.д. Сокращение мышц не возможно без энергии, получаемой благодаря АТФ.

Структура АТФ

Три компоненты входят в структуру АТФ :

1.Трифосфат

Если рассматривать молекулу АТФ, то в ее центре располагается молекула рибозы, ее конец является началом для аденина, что хорошо показано на рисунке выше. Трифосфат находится с противоположной стороны от рибозы. АТФ заполняет протеиносодержащее волокно, которое называется миозином . Это - фибриллярный белок, являющийся одним из основных компонентов сократительных волокон мышц. Миозин отвечает за формирование всех мышечных клеток. Одно из главных свойств миозина - способность расщеплять АТФ.

Воспроизведение АТФ

Количество АТФ не безгранично. В среднем через несколько секунд движения его количество исчерпывается. Значит, нужно восполнить его количество. В человеке заложены специальные механизмы, которые занимаются воспроизведением структур АТФ:

  • Аэробное дыхание
  • Гликоген и молочная кислота
  • Фосфагенная система

Данные механизмы энергообмена включаются в работу в строго определенной время. В бодибилдинге, где чаще всего практикуются «многоповторы», используются все 3 системы. А вот в скоростно-силовых видах спорта преобладают вторая и третья.


В бодибилдинге крайне интенсивные нагрузки. Поскольку самый мощный источник ресинтеза атф в бодибилдинге - это креатин-фосфат(третий механизм синтеза АТФ), то повышение его количества приведет к тому, что человек сможет тренироваться интенсивно более длительное время.

Восстановление фосфагенов (АТФ и КрФ)

Фосфагены, особенно АТФ, восстанавливаются очень быстро (рис. 25). Уже на протяжении 30 с после прекращения работы восстанавливается до 70% израсходованных фосфагенов, а их полное восполнение заканчивается за несколько минут, причем почти исключительно за счет энергии аэробного метаболизма, т. е. благодаря кислороду, потребляемому в быструю фазу О2-долга. Действительно, если сразу после работы жгутировать работающую конечность и таким образом лишить мышцы кислорода, доставляемого с кровью, то восстановление КрФ не произойдет.

Чем больше расход фосфагенов за время работы, тем больше требуется О2 для их восстановления (для восстановления 1 моля АТФ необходимо 3,45 л О2). Величина быстрой (алактатной) фракции О2-долга прямо связана со степенью снижения фосфагенов в мышцах к концу работы. Поэтому данная величина указывает на количество израсходованных в процессе работы фосфагенов.

У нетренированных мужчин максимальная величина быстрой фракции О2-долга достигает 2-3 л. Особенно большие величины этого показателя зарегистрированы у представителей скоростно-силовых видов спорта (до 7 л у высококвалифицированных спортсменов). В этих видах спорта содержание фосфагенов и скорость их расходования в мышцах прямо определяют максимальную и поддерживаемую (дистанционную) мощность упражнения.

Восстановление гликогена. По первоначальным представлениям Р. Маргария и др. (1933), израсходованный за время работы гликоген ресинтезируется из молочной кислоты на протяжении 1-2 ч после работы. Расходуемый в этот период восстановления кислород определяет вторую, медленную, или лактатную, фракцию О2-Долга. Однако в настоящее время установлено, что восстановление гликогена в мышцах может длиться до 2-3 дней

Скорость восстановления гликогена и количество его восстанавливаемых запасов в мышцах и печени зависит от двух основных факторов: степени расходования гликогена в процессе работы и характера пищевого рациона в период восстановления. После очень значительного (более 3/4 исходного содержания), вплоть до полного, истощения гликогена в рабочих мышцах его восстановление в первые часы при обычном питании идет очень медленно, и для достижения предрабочего уровня требуется до 2 суток. При пищевом рационе с высоким содержанием углеводов (более 70% суточного калоража) этот процесс ускоряется - уже за первые 10 ч в рабочих мышцах восстанавливается более половины гликогена, к концу суток происходит его полное восстановление, а в печени содержание гликогена значительно превышает обычное. В дальнейшем количество гликогена в рабочих мышцах и в.печени продолжает увеличиваться и через 2-3 суток после "истощающей" нагрузки может превышать предрабочее в 1,5-3 раза - феномен суперкомпенсации.

При ежедневных интенсивных и длительных тренировочных занятиях содержание гликогена в рабочих мышцах и печени существенно снижается ото дня ко дню, так как при обычном пищевом рационе даже суточного перерыва между тренировками недостаточно для полного восстановления гликогена. Увеличение содержания углеводов в пищевом рационе спортсмена может обеспечить полное восстановление углеводных ресурсов организма к следующему тренировочному занятию.

Устранение молочной кислоты. В период восстановления происходит устранение молочной кислоты из рабочих мышц, крови и тканевой жидкости, причем тем быстрее, чем меньше образовалось молочной кислоты во время работы. Важную роль играет также послерабочий режим. Так, после максимальной нагрузки для полного устранения накопившейся молочной кислоты требуется 60-90 мин в условиях полного покоя - сидя или лежа (пассивное восстановление). Однако, если после такой нагрузки выполняется легкая работа (активное восстановление), то устранение молочной Кислоты происходит значительно быстрее. У нетренированных людей оптимальная интенсивность "восстанавливающей" нагрузки - примерно 30-45% от МПК (например, бег трусцой), а. у хорошо тренированных спортсменов - 50-60% от МПК, общей продолжительностью примерно 20 мин.

Существует четыре основных пути устранения молочной кислоты:

  • 1) окисление до СО2 и ШО (так устраняется примерно 70% всей накопленной молочной кислоты);
  • 2) превращение в гликоген (в мышцах и печени) и в глюкозу (в печени) около 20%;
  • 3) превращение в белки (менее 10%); 4) удаление с мочой и потом (1-2%). При активном восстановлении доля молочной кислоты, устраняемой аэробным путем, увеличивается. Хотя окисление молочной кислоты может происходить в самых разных органах и тканях (скелетных мышцах, мышце сердца, печени, почках и др.), наибольшая ее часть окисляется в скелетных мышцах (особенно их медленных волокнах). Это делает понятным, почему легкая работа (в ней участвуют в основном медленные мышечные волокна) способствует более быстрому устранению лактата после тяжелых нагрузок.

Значительная часть медленной (лактатной) фракции О2-долга связана с устранением молочной кислоты. Чем интенсивнее нагрузка, тем больше эта фракция. У нетренированных людей она достигает максимально 5-10 л, у спортсменов, особенно у представителей скоростно-силовых видов спорта, - 15-20 л. Длительность ее - около часа. Величина и продолжительность лактатной фракции О2-долга уменьшаются при активном восстановлении.

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама